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Abstract The selective transcriptional profiling approach

involves selecting an optimal subset of individuals to

microarray from a larger set of individuals for which rel-

atively inexpensive quantitative trait and molecular marker

data are available. The goal of the selection and subsequent

analyses is to identify genes whose expression is associated

with a quantitative trait or quantitative trait locus (QTL). In

this paper, we applied the selective transcriptional profiling

approach to data sets concerning flowering time and gene

transcription levels of Arabidopsis recombinant inbred

lines. Our results confirm that the selective transcriptional

profiling approach can achieve much greater power for

uncovering associations than standard approaches that

ignore information from classical traits. In addition, we

show that selective transcriptional profiling can achieve

power similar to standard approaches at a fraction of the

cost and effort. We also identified three groups of genes

which show distinctive patterns with regard to gene

expression levels, QTL genotype, and a classical trait. This

study represents the first application of selective tran-

scriptional profiling to real data and serves as a template for

dissecting gene regulation networks related to a classical

trait using the selective transcriptional profiling approach.

Introduction

Recently, there has been great interest in combining

quantitative trait locus (QTL) mapping technique and

microarray technology to dissect regulation networks for

gene expression. In genetical genomic (Jansen and Nap

2001) studies, a gene’s transcript abundance measured by

microarrays is treated as a quantitative trait to map

expression QTLs (eQTL, Schadt et al. 2003). Published

results involving yeast, mice, human, and Arabidopsis have

revealed complex inheritance mechanisms for gene tran-

scription levels (Brem et al. 2002; Schadt et al. 2003;

Yvert et al. 2003; Bystrykh et al. 2005; Chesler et al. 2005;

Hubner et al. 2005; DeCook et al. 2006; West et al. 2007).

Both cis- and trans-acting eQTLs have been described for

regulatory loci that do or do not colocalize with the gene

targeted for regulation. While true cis-eQTL are believed

to be genes that regulate their own expression, evidence in

several organisms suggests the existence of eQTL hot spots

with multiple adjacent trans-eQTLs that control a large

number of transcripts. Studies using the genetical genomics

approach have also led to successful mapping of cis-reg-

ulating genes. Examples include Brem et al. (2002),

Rockman and Wray (2002), Lan et al. (2003), Schadt et al.

(2003), Pastinen and Hudson (2004), Doss et al. (2005),

GuhaThakurta et al. (2006), Hughes et al. (2006), Kiekens

et al. (2006), Zhang et al. (2006), Liang et al. (2007) and

Luo et al. (2007). Readers are also referred to the review

article of Sieberts and Schadt (2007) for more discus-

sion. However, there remain considerable obstacles in
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deciphering the pathways that eQTLs use to modulate

various phenotypes.

The selective transcriptional profiling approach pro-

posed by Wang and Nettleton (2006) focused on a new

aspect of identifying gene regulation pathways. The

approach is motivated by the fact that a research project is

often focused on a specific classical quantitative trait. If a

major QTL for this classical trait has been identified, it is

often desirable to test whether this QTL is also associated

with the transcription level of any genes, which will pro-

vide clues as to which genes belong to the pathway that the

QTL uses to modulate the classical trait. Wang and Net-

tleton (2006) argue that because the transcriptional

abundance of genes that are regulated by the QTL is likely

to be correlated with the trait level after accounting for the

QTL effect, incorporating the trait data on extra individuals

can significantly increase the power for detecting the

association between the QTL and gene expression levels.

Thus in a study based on selective transcriptional profiling,

a panel of several dozen to several hundred individuals is

used to map the QTL associated with the trait of interest.

After a major QTL has been identified, a subset of indi-

viduals is selected for microarray analysis to measure gene

expression levels; then the microarray data and the trait

data on all individuals are combined to perform tests on the

association of the QTL with gene expression levels.

Because microarray experiments are only performed on a

subset of individuals, the financial and human cost related

to a large number of microarrays can be greatly reduced. At

the same time, utilizing trait data on extra individuals in

selective transcriptional profiling can potentially enhance

the power of the test even with fewer microarrays.

The performance of the selective transcriptional profil-

ing approach has been demonstrated with simulated data

sets in Wang and Nettleton (2006) and through hypothet-

ical examples in Nettleton and Wang (2006). Until now,

however, the effectiveness of the approach has never been

investigated using trait and expression data from an actual

experiment. In this paper, we illustrate the first ever real-

data application of selective transcriptional profiling using

data concerning flowering time under short photoperiod on

398 recombinant inbred lines derived from two Arabid-

opsis thaliana accessions (Bayreuth-0 and Shahdara), as

well as microarray data on 142 of these recombinant inbred

lines (RILs). We demonstrate that the selective transcrip-

tional profiling approach does possess the proposed

advantage in identifying genes whose transcriptional

abundance is associated with a quantitative trait or QTL.

Our analyses also revealed three distinctive groups of

genes that are of interest for studying expression regulation

related to a specific trait. Methods used in this paper can

serve as a template for future research using selective

transcriptional profiling.

Materials and methods

Selective transcriptional profiling

The experimental design and data analysis for selective

transcriptional profiling has been discussed in Wang and

Nettleton (2006). For a classical trait of interest, suppose a

panel of N individuals was used to carry out QTL mapping

and a QTL has been identified. For convenience, also

suppose the QTL has two genotypes, x and y; Nx of the N

individuals are of genotype x and Ny individuals are of

genotype y. Because of financial or time constraints, only

nx individuals of genotype x and ny individuals of genotype

y will be chosen for microarray analysis to measure the

expression level of each of thousands of genes. First we

consider the model for the expression of only one gene,

though the analysis will be implemented separately on

thousands of genes.

Let Xi1 and Xi2 denote the quantitative trait and gene

expression measure for the ith individual of genotype x.

We assume that (Xi1, Xi2)0 has (perhaps after suitable

transformation) a bivariate normal distribution. There are

nx complete pairs of data for expression and trait,

ðX11;X12Þ; ðX21;X22Þ; ; ðXnx1;Xnx2Þ;

and Nx - nx observations of trait only,

Xðnxþ1Þ1;Xðnxþ2Þ1; ;XNx1:

Similarly, Yj1 and Yj2 are trait and expression measures of

the jth individual of genotype y. We assume (Yj1, Yj2)0 are

bivariate normal with the same covariance matrix as (Xi1,

Xi2)0. There are ny pairs of (Yj1, Yj2) and Ny - ny

observations of Yj1 only. The difference between the gene

expression means of the two genotypes, d, is estimated by

the maximum likelihood estimator, d̂; with the likelihood

function defined on both the complete data pairs of

expression and trait and also the observations of trait

only. Wang and Nettleton (2006) derived the following

expression for the asymptotic variance of d̂ :

Varðd̂Þ ffi 1

Nx
þ 1

Ny

� �
ð1� q2Þr2

t

ðnx þ nyÞr2
st

þ q2

� ��

þ 1

nx
þ 1

ny

� �
ð1� q2Þ

�
r2

e

þ
fðlsx � lsyÞ � ðlx � lyÞg2r2

ejt
ðnx þ nyÞr2

st

;

ð1Þ

where q denotes the within-genotype correlation between

expression and trait; r2
t denotes the within-genotype trait

variance; r2
st denotes the within-genotype trait variance of

the selected individuals; r2
e denote the within-genotype

expression variance; lx and ly denote the trait means for

the two genotypes; lsx and lsy denote the trait means for
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the selected individuals of the two genotypes and r2
e|t

denotes the variation of expression for individuals with a

common trait value. The unknown parameters in Eq. (1)

can be estimated from the data using the maximum like-

lihood method to obtain dVarðd̂Þ; an estimate of Varðd̂Þ: The

Wald statistic, W ¼ d̂2=dVarðd̂Þ; is used to conduct a test for

association between gene expression and QTL genotype

that appropriately accounts for the process of selecting

individuals for measurement with microarrays.

Examination of Eq. (1) suggests an optimal strategy for

minimizing Varðd̂Þ and maximizing power to detect asso-

ciation between gene expression and QTL genotype. Note

that only the parameters r2
st, lsx and lsy are affected by

the selection strategy. To minimize variance, it is clearly

preferable to have

fðlsx � lsyÞ � ðlx � lyÞg
2 ¼ 0; ð2Þ

which can be achieved by equating lsx - lsy to lx - ly.

This indicates that the difference in trait means across

genotypes for the selected individuals should be identical to

the difference in trait means across genotypes for all indi-

viduals. Since r2
st should preferably be maximized at the

same time, the optimal strategy involves selecting the

individuals with the most extreme traits within each geno-

type class. Specifically, within each genotype class, we

should select a equal number of individuals with the highest

trait values as well as individuals with the lowest trait val-

ues. Note that this differs from the popular approach of

selecting only the individuals with the most extreme trait

values regardless of QTL genotype. That strategy is actually

expected to perform poorly because the difference in means

for selected individuals will be artificially exaggerated

relative to the difference in means for all individuals.

It also should be noted that, for sufficiently large sample

sizes, random selection within each QTL genotype class will

be expected to perform nearly as well as the optimal

selection strategy described above. Random selection sat-

isfies the condition of Eq. (2), at the same time, the effect of

the size of r2
st will be negligible if Nx and Ny are very large

relative to nx and ny, as is easily observed by examining

Eq. (1). Results from simulation studies in Wang and Net-

tleton (2006) show that random selection can achieve almost

identical power when compared to the optimal strategy, and

both have performance significantly better than tests using

only microarray data on those nx + ny individuals.

To understand the genetic networks that underlie

quantitative variation in the trait, it is also very important to

discover genes whose expression is correlated with the trait

after accounting for the known effects of the QTL on the

trait. Many of these genes may have expression that is

associated with QTL genotype, and would therefore be

identified as important via the tests described above. Other

genes, however, may have expression values that are cor-

related with the trait but unassociated with genotype at the

QTL. Wang and Nettleton (2006) also developed a new

approach for identifying genes in the second category by

testing H0:q = 0 versus Ha:q = 0. This method is analo-

gous to the Fisher’s transformation, but it also utilizes the

trait information on extra individuals as opposed to using

only individuals with both trait and expression data. Sim-

ilar to the Wald test described earlier, we will show that

this test is more powerful in testing for a non-zero corre-

lation coefficient within genotypes when compared to tests

using only individuals chosen for microarray experiments.

Data sets and analyses

A population of 420 RILs was generated from the cross

between two genetically distant ecotypes of A. thaliana,

Bay-0 and Shahdara (Loudet et al. 2002). A set of 38

physically anchored microsatellite markers was used to

construct a genetic map from these RILs. Loudet et al.

(2002) performed QTL mapping for flowering time under

both long and short photoperiod, and two of the detected

QTLs colocalize very precisely with FRIGIDA (FRI) and

FLOWERING LOCUS C (FLC) genes. Data sets for

genomic markers and flowering time are accessible through

the website http://www.genenetwork.org.

The microarray data sets used in the analysis were

described in Kliebenstein et al. (2006). Of the total of 420

RILs, 148 RILs were included in the microarray experi-

ment. For each biological replicate, five plants from each of

the RILs were grown under short day conditions. At the

end of growth period, all rosette leaves from three plants

were harvested to extract RNA samples. Two biological

replicates were processed for each RIL. Each RNA sample

was used for cDNA synthesis, and biotinylated cRNA was

synthesized and hybridized to an Affymetrix ATH1

GeneChip representing 22,810 A. thaliana genes. These

microarray data sets are available at http://elp.ucdavis.edu.

GeneChips corresponding to RILs with missing phenotype

(flowering time) or genotype data were removed from the

subsequent analyses. Data from the remaining GeneChips

were normalized using the robust multichip average

(RMA) method (Bolstad et al. 2003). The measurements

from the two biological replicates of each RIL were aver-

aged to give a single transcript measurement per gene and

RIL. This process yielded a data set consisting of genotype

and flowering time data for 398 RILs and expression levels

for 142 of these 398 RILs.

Selective transcriptional profiling was carried out

according to Wang and Nettleton (2006) with flowering

time during short days as the classical trait of interest and
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the flowering time QTL on chromosome four identified by

Loudet et al. (2002) as the locus of primary interest.

Because the position of this QTL is very close to that of

marker MSAT4.8, genotypes of MSAT4.8 were used to

represent the QTL genotype. As shown in the simulation

studies of Wang and Nettleton (2006), a small portion of

mispredicted QTL genotypes has little effect on the test

results.

Results

To assess the performance of the selective transcriptional

profiling approach, the Wald test was performed on each

gene represented on the Affymetrix ATH1 GeneChip, and

the results were compared to those obtained by two-sample

t test using only microarray data. For each gene, expression

levels and flowering time for 142 RILs (106 with Bay-0

genotype, 36 with Shahdara genotype) as well as the

flowering time for 256 additional RILs (141 with Bay-0

genotype, 115 with Shahdara genotype) were used to

construct the Wald statistic following the method described

by Wang and Nettleton (2006). The t test for each gene, on

the other hand, was performed only on the expression

levels of the 142 RILs for which microarray data were

available. To further evaluate the effect of the proportion of

individuals chosen for microarray experiments, we also

randomly selected 36 RILs with Bay-0 genotype and 35

RILs with Shahdara genotype, respectively, among those

with microarray data, and carried out the Wald test on

expression levels and flowering time of these 71 lines plus

the flowering time measurements on the remaining 327

lines. Two-sample t tests were also performed on the

expression levels on these 71 lines. After conducting tests

on every gene, the q value method described in Storey and

Tibshirani (2003) was used to control the false discovery

rate (FDR) at specified levels.

Table 1 shows the number of genes whose transcrip-

tional abundance differs significantly between the two

genotypes and are thus likely to be associated with the

MSAT4.8 locus, based on the Wald test or the two-sample t

test. It is clear that at every specified FDR level, the Wald

test detected more significant genes than the two-sample t

test. Specifically, the Wald test using expression level on

142 RILs and flowering time on all 398 lines detected all

the genes that were detected by the t tests and, in addition,

detected as much as 31% more significant genes (at

FDR = 0.01). More prominently, the Wald test detected

61% more genes using expression data on 71 lines and

flowering time on all 398 lines (FDR = 0.01) in addition to

all the genes detected by the t test performed on the

expression levels of 71 lines only. It is also notable that the

number of genes detected by the Wald test using

expression levels on 71 lines plus flowering time on 398

lines approached the number detected by the two-sample t

test using microarray data on all 142 lines. Using only half

the microarray resources, the Wald test found about 80% of

the genes detected by the t tests plus additional associations

close to 10% of the total detected by the t test. These results

confirm the conclusion of Wang and Nettleton (2006) that

the selective transcriptional profiling approach can achieve

much greater power using the same number of microarrays

by incorporating data on the classical trait of interest from

additional individuals, or the approach can be used to

achieve similar power using many fewer microarrays thus

resulting in considerable savings in money and time.

Moreover, we applied the popular approach of selecting

only the RILs with the most extreme trait values (36 with

the longest flowering time, 35 with the shortest flowering

time) regardless of QTL genotype. Two-sample t tests

performed on the expression levels of these 71 lines

detected less than 62% of the significant genes detected by

t tests on the same number of randomly selected lines.

Wald tests using the expression data on these 71 lines and

the flowering time on all 398 lines performed essentially

the same as the t tests (results omitted). This confirmed the

observation in Wang and Nettleton (2006) that selecting

individuals with the most extreme trait values without

taking into account the genotype is in fact undesirable.

We also used methods described in Wang and Nettleton

(2006) to detect genes whose expression level is correlated

with the trait after accounting for the effects of the QTL at

the MSAT4.2 locus. Table 2 compared the performance of

the method of Wang and Nettleton (2006) and that of

Fisher’s z test, which uses data only from individuals

selected for microarray experiments. Again, when using

the method of Wang and Nettleton (2006), more genes can

be detected in addition to all the genes detected by Fisher’s

z test. Thus, by taking into account the flowering time

information on plants not selected for microarray experi-

ments, the selective transcriptional profiling approach can

Table 1 Comparing the power of the Wald test and two-sample t test

FDR 142 lines 71 lines

t test Wald t test Wald

0.0005 112 145 76 105

0.001 131 163 88 117

0.005 207 255 112 169

0.01 255 334 142 229

The number of genes whose transcriptional abundance is associated

with the marker MSAT4.2 according to the Wald test or two-sample t
test is listed with the corresponding false discovery rate (FDR) level.

The Wald test was performed on both microarray data (from 142 or

71 RILs) as well as the flowering time measurements of all 398 RILs;

the t test was performed on microarray data only
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significantly increase the power for detecting genes whose

expression level is correlated with the trait within the QTL

genotype.

It is notable that genes whose expression was associated

with the flowering time QTL and genes whose expression

was correlated with flowering time within QTL genotype

do not totally overlap. Table 3 shows the results for 12

genes with different patterns. For the first four genes

(Group A) in Table 3, the transcriptional abundance is

significantly associated with the flowering time QTL at

MSAT4.2, and the within QTL genotype correlation

coefficient between the transcription level and flowering

time is also highly significant. For these genes, the differ-

ence between q values obtained using the t test and using

the Wald test is very notable.

For the four genes in the middle (Group B) of Table 3,

the within QTL genotype correlation coefficient is close to

zero, though the association between the transcription level

and the flowering time QTL is highly significant. In gen-

eral, the difference between the q values obtained by using

the two different methods for Group B genes tend to be

smaller than those for Group A genes. This is consistent

with the expectation that the Wald test will provide the

most substantial increase in power when within QTL

genotype correlation is large. Interestingly, one of the

genes in this category is FRI, the gene generally thought to

be the underlying gene for the QTL at this position.

Another interesting fact is that, without accounting for the

genotype, the correlation coefficient between the expres-

sion level of FRI and flowering time will be a significant

0.38, which demonstrates that a significant unconditional

correlation might be due to the QTL effect on both trait and

expression rather than correlation between trait and

expression. Thus, in this case, we see little evidence that

the expression level of FRI affects flowering time or vice

versus. Rather, it appears that both flowering time and the

expression level of FRI are associated with the flowering

time QTL.

The last four genes (Group C) in Table 3 have large

within QTL genotype correlation coefficients, but their

transcription levels do not seem to be associated with the

flowering time QTL. This suggests that testing within QTL

genotype correlation is useful even for genes whose tran-

scriptional abundance is not associated with the QTL. In

addition, without conditioning on the QTL genotype, the

estimated correlation coefficient will be smaller. These

three distinctive patterns are also evident in Fig. 1, in

Table 2 Testing for significant correlation coefficient within QTL

genotype

FDR 142 lines 71 lines

Fisher Wang and Nettleton Fisher Wang and Nettleton

0.0005 124 381 24 44

0.001 145 457 28 56

0.005 275 774 55 98

0.01 344 1,021 68 132

The numbers of genes whose transcriptional abundance is correlated

with flowering time after accounting for the effect of the flowering

time QTL [according to the method of Wang and Nettleton (2006) or

Fisher’s z test] are listed with the corresponding FDR levels. Wang

and Nettleton’s method utilizes both microarray data (from 142 or 71

RILs) as well as the flowering time measurements of all 398 RILs;

Fisher’s z test uses microarray data only

Table 3 Distinctive patterns of three gene groups

Group Probe ID Gene description Correlation q values

Wang and Nettleton t test Wald

A 267509 AGL20 -0.692 0.000 0.000 0.000

A 246864 GA3 0.504 0.000 0.000 0.000

A 247469 Expressed protein -0.565 0.000 0.001 0.000

A 264510 PIF3 -0.554 0.000 0.003 0.000

B 255634 FRI -0.032 0.569 0.000 0.000

B 255558 GLB1 0.054 0.504 0.000 0.000

B 254909 Dirigent family protein -0.000 0.644 0.001 0.000

B 254903 TUF -0.092 0.382 0.002 0.001

C 264954 Carboxy-PEP mutase 0.653 0.000 0.532 0.609

C 245087 Expressed protein -0.569 0.000 0.287 0.168

C 250063 CSA1 0.594 0.000 0.257 0.291

C 259879 Putative calmodulin 0.577 0.000 0.616 0.678

The within-genotype correlation coefficients between expression levels and flowering time, as well as q values for Wang and Nettleton’s test for

correlation, the Wald test and two-sample t test for association with the flowering time QTL, are shown for 12 genes. These genes belong to three

different groups as described in the text. The correlation coefficients and q values are rounded to three decimal places
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which the transcription abundance is plotted versus flow-

ering time for six genes in Table 3 using plants with

microarray data.

Discussion

Combining QTL mapping and microarray analysis has great

potential in providing detailed information on gene regula-

tion networks. Recent studies on eQTLs treat transcript

levels as quantitative traits, and have discovered eQTLs with

multiple linkages colocalizing with classical QTLs associ-

ated with traits segregating in the population under study. As

classical quantitative traits are often relatively inexpensive

to obtain, the idea of selective transcriptional profiling,

which uses classical trait information to enhance the power

for detecting genes whose transcription level is associated

with a classical QTL, is especially appealing when a

researcher is interested in studying the transcriptional reg-

ulation mechanisms related to a specific trait. In this paper,

we report the first application of selective transcriptional

profiling on a real data set and confirm the superior power of

Fig. 1 Plots of gene expression

levels and flowering time show

different patterns regarding

gene expression, QTL genotype,

and trait. The transcription

levels are plotted versus

flowering time for six genes

belonging to three groups

described in the text. Open
circles represent plants with the

Bay-0 genotype at MSAT4.2,

and crosses represent plants

with the Shahdara genotype
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the selective transcriptional profiling approach. When

microarray experiments cannot be performed on all plants,

the selective transcriptional profiling approach can lead to

detection power comparable to methods using only micro-

array data with considerably more microarrays. Though the

results discussed here only involve one QTL with two

genotypes, situations with more genotypes and/or more

QTLs can be dealt with as discussed in Wang and Nettleton

(2006), provided that there are enough individuals in each

genotypic combination.

An interesting finding in our analyses is the existence of

three distinctive groups of genes that are all of biological

interest: genes whose expression levels are associated with

the flowering time QTL and are also significantly corre-

lated with flowering time after accounting for the QTL

genotype, genes whose transcriptional abundance is asso-

ciated with the flowering time QTL but not significantly

correlated with the flowering time after accounting for the

QTL genotype, and genes whose transcription levels are

not associated with the flowering time QTL but are sig-

nificantly correlated with flowering time within each QTL

genotype. All of these three groups should be further

considered in studying gene regulation networks for a

classical trait. It would be of interest to determine whether

there are distinct biological mechanisms associated with

each of the three groups, which might provide insight into

transcriptional regulation pathways.

The results presented in this paper also highlight the

advantage of using recombinant inbred lines. Though ide-

ally microarray experiments and the measurements of

classical trait should be performed on the same plants or

animals, we have shown that satisfactory results can be

obtained with the selective transcriptional profiling

approach using microarray data and classical trait data

from different experiments performed by different

researchers. Depositories such as genenetowork.org devote

significant resources to collecting data on genotype, phe-

notype, and microarray measurements on recombinant

inbred lines of various plant and animal species (Wang

et al. 2003). This provides a ideal platform for applying the

selective transcriptional profiling approach to analyze data

from different sources in order to better understand gene

regulation mechanisms.

Recently, a paper by Liang et al. (2007) provides an

excellent example for combining QTL mapping method-

ology with microarray data analysis. In their study,

recombinant inbred strains derived from crosses between

B2 and D2 mice were used to identify a QTL on chro-

mosome 3 associated with the size of the hematopoietic

stem cell (HSC) population. Microarray experiments were

then carried out to identify genes whose transcriptional

abundance is associated with this QTL. The authors then

focused on one of these genes, latexin (Lxn), which

colocalizes with the QTL. By studying congenic strains and

artificially overexpressing Lxn in marrow cells infected

with retroviral vectors containing Lxn-GFP, the authors

further confirmed that Lxn is the primary gene underlying

the QTL associated with HSC numbers. The study of Liang

et al. (2007) demonstrates the effectiveness of combining

QTL mapping and microarray experiments, though it

focused on identifying cis-acting eQTLs, and the QTL

mapping and microarray data were analyzed separately.

The methods described in this paper provide a natural way

to combine classical trait data and microarray measure-

ments for the detection of different patterns of

transcriptional regulation.
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